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Abstract

The investigation of intrinsically disordered proteins (IDPs) is a new frontier
in structural and molecular biology that requires a new paradigm to connect
structural disorder to function. Molecular dynamics simulations and statisti-
cal thermodynamics potentially offer ideal tools for atomic-level characteri-
zations and thermodynamic descriptions of this fascinating class of proteins
that will complement experimental studies. However, IDPs display sensitiv-
ity to inaccuracies in the underlying molecular mechanics force fields. Thus,
achieving an accurate structural characterization of IDPs via simulations is
a challenge. It is also daunting to perform a configuration-space integra-
tion over heterogeneous structural ensembles sampled by IDPs to extract,
in particular, protein configurational entropy. In this review, we summarize
recent efforts devoted to the development of force fields and the critical
evaluations of their performance when applied to IDPs. We also survey re-
cent advances in computational methods for protein configurational entropy
that aim to provide a thermodynamic link between structural disorder and
protein activity.
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1. INTRODUCTION

There is increasing interest in intrinsically disordered proteins (IDPs). These proteins are fully
functional yet lack well-defined three-dimensional structures, thereby breaking the conventional
rigid rule of the structure–function paradigm (1). Fully or partially disordered proteins are abun-
dant in eukaryotes; in particular, ∼50% of the sequences coded by the human genome are predicted
to comprise disordered segments of >30 amino acids (2, 3). IDPs play a crucial role in gene reg-
ulation, signal transduction, and biomolecular recognition (4, 5). Conformational disorder is an
essential structural ingredient of IDPs, which enables them to bind with multiple partners with
high specificity but modest affinity (6, 7). IDPs also frequently serve as a hub in protein–protein
interaction networks (8), and they are associated with a variety of human diseases such as cancer,
diabetes, and neurodegenerative disorders (9–11). Their critical roles in cellular functions and net-
works as well as their association with various human diseases make IDPs attractive therapeutic
targets. Thus, IDPs constitute a fascinating class of proteins whose investigation may not only of-
fer new paradigms for how proteins function through disorder, but also facilitate the development
of novel drug molecules to modulate protein–protein interactions.

Because of the absence of a single dominant structure, the structural features of IDPs must
be characterized with an ensemble of interconverting conformations (12, 13). This poses a chal-
lenge for experimental methods that normally measure time- and space-averaged properties and,
hence, have difficulty capturing inherently transient conformational order/disorder (14, 15). In
contrast, computer simulations produce a time sequence of atomic-level configurations and offer a
potentially powerful complement to experiments to elucidate the key conformational characteris-
tics of IDPs. Indeed, atomistic simulations have been adopted to elucidate the inherent flexibility
and heterogeneous ensemble of IDPs (16–20). However, achieving an accurate structural charac-
terization of IDPs via simulations is challenging because simulation results crucially rely on the
accuracy of the underlying potential energy functions or force fields. Indeed, protein force fields
were developed mainly to target folded globular proteins, and their applicability to IDPs is not
obvious. In Section 2, we survey recent efforts devoted to the development of force fields and
critical evaluations of their performance when applied to IDPs.

Structural investigation alone is often insufficient to rationalize protein activity (21). Indeed,
protein configurational entropy is receiving growing attention as a major factor that controls
the activity of IDPs associated with a number of cellular functions (22–24). Thus, understanding
the relationship between the configurational entropy and the degree of conformational disorder,
as well as its variation upon conformational change and binding with partner(s), is of funda-
mental importance. Doing so entails fully characterizing the protein free-energy landscape be-
cause configurational entropy measures how much configuration space is accessible to a protein’s
internal degrees of freedom. However, this is a daunting task, in particular for IDPs, because
configuration-space integration must be performed over the heterogeneous structural ensembles
sampled by IDPs. Thus, certain approximations are inevitably introduced to evaluate this im-
portant thermodynamic parameter. Even though the quasi-harmonic approximation (25–29) has
been the most popular approach to compute protein configurational entropy based on atomistic
simulations, it does not capture the intricate features of the underlying landscape, such as the
presence of multiple minima and the correlation effects between conformational coordinates. A
significant effort has hence been put forth to go beyond the quasi-harmonic approximation, and
Section 3 is devoted to a survey of recent developments in computational methods, particularly
focusing on those that enable exploration of the thermodynamic descriptions of conformational
disorder.
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2. CHARACTERIZING CONFORMATIONAL DISORDER

In this section, we first provide an overview of the features of representative biomolecular force
fields employed in atomistic molecular dynamics simulations (Section 2.1). We then outline recent
efforts devoted to refining those force fields (Section 2.2) and to developing new water models
(Section 2.3) that better capture the structural characteristics of IDPs. Finally, we survey recent
critical evaluations of the performance of the force fields in simulations of IDPs (Section 2.4).

2.1. Biomolecular Force Fields

In principle, quantum mechanical calculations provide the complete potential energy surface of
molecular systems as a function of the constituent atoms’ coordinates. However, this is not prac-
tically feasible for complex macromolecules such as proteins, particularly when they are impacted
by aqueous environments. Therefore, it is customary to employ molecular mechanics force fields,
which refer to empirical functional forms and parameter sets, to calculate the potential energy
of biomolecular systems (30, 31). Functional forms of potential energy can generally be written
as Etotal = Ebonded + Enonbonded. The bonded term (Ebonded) typically consists of bond, angle, and
dihedral-angle potentials that describe the interactions of the atoms linked by covalent bonds.
The nonbonded term (Enonbonded) includes noncovalent van der Waals and electrostatic interac-
tions. Parameter sets within empirical functional forms are determined by quantum mechanical
calculations for small related systems (e.g., short peptides) and/or through fitting procedures to
experimental observables.

Various force fields have been developed to describe biomolecules in aqueous environments;
the representative force fields are Amber [ff99 (32), ff99SB (33), ff03 (34)], CHARMM (Chemistry
at Harvard Molecular Mechanics) [CHARMM22 (35), CHARMM22/CMAP (grid-based energy
correction maps) correction (36)], GROMOS96 (Groningen Molecular Simulation) [43a1 (37),
53a6 (38), 54a7 (39)], and OPLS (Optimized Potentials for Liquid Simulations) (40) (Table 1).
However, because of their empirical and approximate nature, they exhibit certain problems, such
as variations in structural propensities and compactness. For example, Amber ff99 (32) tends to
overestimate the α-helical structures (33, 41), whereas Amber ff99SB (33) underestimates those
structures (42); the CHARMM22/CMAP correction (36) favors helical structures (43, 44); GRO-
MOS96 (43a1) (37) displays a tendency to form β-sheet structures (41, 45); and OPLS yields a
better balance between helical and extended conformations (45).

The secondary structural propensities exhibited by different force fields impact IDP simula-
tions. For example, in the simulation studies of amyloid-β protein dimers (an IDP implicated in
Alzheimer’s disease), use of the GROMOS96 (53a6) force field has led to a much higher average
β-sheet content in the dimer structure (46) than that obtained with CHARMM and OPLS force
fields (47–49). A similar preference for secondary structures, depending on the force fields, was
observed in a simulation study on amylin, an IDP implicated in type 2 diabetes (50): GROMOS96
(53a6) tends to predict β-hairpins, CHARMM22/CMAP generates overly α-helical structures,
and OPLS favors disordered structures. Accordingly, good balance among helical, strand, and coil
structures is needed in force field developments.

2.2. Recent Improvements

To achieve balance among the secondary structures, substantial effort has been invested in improv-
ing force fields, with primary focus on modifying the backbone and side-chain dihedral-angle po-
tentials (see Table 1). Representative force fields include Amber ff99SB∗ (42), ff99SB-ILDN (51),

www.annualreviews.org • Computer Simulations of Intrinsically Disordered Proteins 119

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
7.

68
:1

17
-1

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

So
ok

m
yu

ng
 W

om
en

's
 U

ni
ve

rs
ity

 o
n 

05
/1

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PC68CH07-Ham ARI 4 April 2017 9:4

Table 1 Representative biomolecular force fields and their default water model

Force
fields Parameter sets Developments (modifications) Water model Reference Villina WWa

Amber ff99 Amber base parameter set TIP3P 32 NA NA

ff99SB Improved backbone torsional
parameters

TIP3P 33 NA NA

ff99SB∗ Corrections to backbone energy terms TIP3P 42 NA NA

ff99SB-ILDN Improved side-chain torsion potentials TIP3P 51 � �
ff99SB∗-ILDN ff99SB∗ + ILDN modifications TIP3P 53 � �
ff99SB-ILDN-phi Modifications to backbone φ angles TIP4P-Ew 56 NA NA

ff99SB-ILDN-NMR Modifications to backbone dihedrals
based on NMR chemical shifts

TIP4P-Ew 57 NA NA

ff03 Another Amber base parameter set TIP3P 34 � �
ff03∗ Corrections to backbone energy terms TIP3P 42 � �
ff03w Corrections to backbone torsion

potentials with improved water model
TIP4P/2005 52 NA NA

ff03ws Modified short-range protein–water
interaction potential (λ = 1.10)

TIP4P/2005 73 NA NA

CHARMM CHARMM22 CHARMM base parameter set Modified TIP3P 35 � �
CHARMM22/
CMAP

CMAP backbone corrections Modified TIP3P 36 � �

CHARMM22∗ Corrections to backbone energy terms Modified TIP3P 53 � �
CHARMM36 Modifications to backbone and

side-chain torsion potentials
Modified TIP3P 54 NA NA

GROMOS GROMOS96 (43a1) All-atom GROMOS parameter set SPC 37 NA NA

GROMOS96 (53a6) Accurate reproduction of hydration
thermodynamics

SPC 38 NA NA

GROMOS96 (54a7) Improvement in torsional potentials
and hydration free energy

SPC 39 NA NA

OPLS OPLS-AA All-atom OPLS parameter set No default
model

40 � �

Abbreviations: CHARMM, Chemistry at Harvard Molecular Mechanics; CMAP, grid-based energy correction map; GROMOS, Groningen Molecular
Simulation; NA, not available; NMR, nuclear magnetic resonance; OPLS, Optimized Potentials for Liquid Simulations; AA, all atom; SPC, simple point
charge; TIP3P, three-site transferable intermolecular potential.
aA check mark (�) indicates that simulations initiated from the unfolded state reached the folded state in 10 μs (villin headpiece subdomain) and 50 μs
(WW domain), whereas a cross mark (�) indicates that the folding did not occur within the respective simulation times.

their combination ff99SB∗-ILDN, ff03∗ (42), ff03w (52), CHARMM22∗ (53), and CHARMM36
(54); other variants have also been developed (55–57). Systematic force field comparison studies
have shown that, overall, force field modifications tend to show improvements that are relatively
stable for different types of secondary structures (58–60). The ability of force fields to fold small
α-helical (villin headpiece subdomain) and β-sheet (WW domain) proteins has also been tested
(59), demonstrating a preference for ff99SB∗-ILDN and CHARMM22∗ (Table 1).

Thus, several simulation studies provide remarkably accurate characterization of ordered
folded protein states. Nevertheless, the unfolded states observed in simulations exhibit certain
discrepancies. For example, the CHARMM22/CMAP force field, which provides an excellent
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description of folded protein states, generates unfolded states that are substantially more helical
than those found experimentally (59). Furthermore, simulations of proteins larger than 20–30
amino acids tend to produce unfolded states that are more compact and structured than those sug-
gested experimentally (44, 61). For example, Amber generally generates more compact unfolded
states than does CHARMM (44). Several other studies have observed structures that were too
compact, contained substantial secondary structures, and exaggerated the intramolecular hydro-
gen bonding networks of unfolded proteins (62–64).

2.3. Importance of Protein–Water Interactions

The choice of solvent model is often significant when quantitatively characterizing biomolecules
in aqueous environments. In particular, compared with those of folded globular proteins, the
structural properties of IDPs are more sensitive to protein–water interactions, as IDPs are more
solvent-exposed. Therefore, validating the use of a particular water model with its corresponding
force field(s) is necessary. To date, three-site models, such as TIP3P (three-site transferable in-
termolecular potential) (65) and SPC (simple point charge) (66), have been employed most widely
(Table 2). Indeed, TIP3P and its slightly modified version are the default solvent models in the
Amber and CHARMM force fields, and the SPC model is usually combined with the GRO-
MOS force field. Four-site water models, such as TIP4P (67) and its additional modifications,
TIP4P/2005 (68) and TIP4P-Ew (69), have also been developed in recent years to reproduce
the structural, dynamical, and thermodynamic properties of water for better comparison with
experiments (Table 2).

In fact, simulation studies of short disordered peptides demonstrate that adopting more refined
water models yields more accurate conformational ensembles (52, 56, 70, 71). For example, com-
bining the ff03w force field with TIP4P/2005 generates more realistic unfolded-state conforma-
tions than are produced using TIP3P water (52). In addition, a study of the amyloid-β21–30 peptide
reports that combining Amber ff99SB with the TIP4P-Ew model, rather than the TIP3P model,
provides better predictions for nuclear magnetic resonance (NMR) observables (70). This was also
demonstrated for the full-length 42-residue amyloid-β protein in another study (72), which com-
pared combinations of Amber ff99SB with TIP3P and with TIP4P-Ew. The ff99SB/TIP4P-Ew

Table 2 Representative water models

Parameters TIP3P (65) SPC (66)
TIP4P

(67)
TIP4P-Ew

(69)
TIP4P/2005

(68)
TIP4P-D

(74)

r(OH), Å 0.9572 1.0 0.9572 0.9572 0.9572 0.9572

HOH, deg 104.52 109.47 104.52 104.52 104.52 104.52

r(OM), Åa NA NA 0.15 0.125 0.1546 0.1546

A × 10−3, (kcal · Å12)/molb 582.0 629.4 600.0 656.1 731.3 904.7

B, (kcal · Å6)/molb 595.0 625.5 610.0 653.5 736.0 900.0

q(O) or q(M)c −0.834 −0.82 −1.04 −1.04844 −1.1128 −1.16

q(H)c +0.417 +0.41 +0.52 +0.52422 +0.5564 +0.58

Corresponding references are provided in parentheses. Abbreviations: NA, not available; SPC, simple point charge; TIP, transferable intermolecular
potential.
aM refers to the dummy atom in the four-site water models that is located near the oxygen along the bisector of the HOH angle.
bA and B are the parameters of the Lennard-Jones potential when it is represented by A/rOO

12 − B/rOO
6, with rOO denoting the oxygen–oxygen distance.

cPartial charges are in units of the electron charge.
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combination showed stronger protein–water interactions with TIP4P-Ew than with TIP3P (72),
thereby providing more extended protein conformations and yielding residue-resolved secondary
structure contents in better agreement with NMR analysis.

As noted above, unfolded or disordered states are predicted to be too compact relative to
experiments by current biomolecular force fields (44), implying that these force fields insufficiently
expose proteins to water. Two approaches have been proposed to address this problem (73, 74).
In one approach, the simplest possible change was introduced. The depth of the Lennard-Jones
potential between the atoms in the protein and the oxygen atom of water is scaled by a factor of
1.1, thus leaving the water–water and protein–protein interactions untouched (73); the resulting
force field is termed ff03ws (Table 1). Such minor strengthening of the protein–water interaction
suffices to reproduce experimentally measured chain sizes of disordered and unfolded proteins. In
another approach (74), a new TIP4P-D water model was introduced by modifying parameters in
the TIP4P model (see Table 2) to correct for the deficiencies in water dispersion interactions.
This new model yielded disordered-state protein structures that are more expanded and in better
agreement with experiment than those obtained with traditional water models (74).

A natural concern here is whether and to what extent such alternations in the protein–water
interaction or in the water model affect the folded-state characteristics, which already provide
acceptable results without such modifications. Interestingly, strengthening the protein–water in-
teractions in the ff03ws force field did not significantly influence protein folded states, despite
marginal changes to the stability of the helical and sheet structures and larger amplitude dynamics
exhibited by the loop regions (73). In contrast, the TIP4P-D water model somewhat destabilizes
the folded states: The native states of the protein villin headpiece subdomain and WW domain
near the melting temperature were destabilized by ∼2 kcal/mol in TIP4P-D versus TIP3P (74).

2.4. Case Studies and Further Necessary Improvements

Here, we provide a brief overview of IDP case studies, on the basis of which we indicate a need for
further improvements to force fields to better capture the structural characteristics of IDPs. Earlier
studies reported that atomistic simulations using state-of-the-art force fields yield conformational
ensembles of IDPs that are in good agreement with various experimental observables (19, 75–
80). However, the applicability of recent force fields has been called into question. For instance, a
simulation study of Histatin 5, a 24-residue cationic salivary IDP with antimicrobial and antifungal
properties, demonstrates that recent force fields (Amber ff99SB-ILDN, ff99SBNMR1-ILDN,
GROMOS 53a6 and 54a7) are equally inappropriate for reproducing the experimental small-
angle X-ray form factor (81). Indeed, overly compact conformational ensembles were generated
from these force fields, and it was necessary to alter the protein–water interaction (thus adopting
the parameters of ff03ws) (see Table 1) to obtain simulation results in agreement with experiments.
Moreover, systematic simulation studies of IDPs for different force fields also indicated surprisingly
large differences in the hydrogen bonding patterns, chain dimensions, and secondary structural
contents (50, 77, 82).

Furthermore, there are contradictory results regarding the most/least accurate force fields
for simulating IDPs (82, 83). In a simulation study of the disordered 24-residue arginine/serine
peptide (82), IDP ensembles generated by several atomistic force fields (Amber ff99SB∗-ILDN,
ff03w, ff03ws, CHARMM22∗, CHARMM36, OPLS) were compared against small-angle X-ray
scattering and NMR data. The conformational ensemble obtained using CHARMM 22∗ agreed
best with all available experimental data. In a separate study (83), unstructured peptides with
sequence EGAAXAASS (X = G, W, I, D, and V) were investigated using Amber ff99SB∗-
ILDN, ff03w, and CHARMM22∗, and the results were compared with those obtained via NMR
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spectroscopy. Here, simulations with CHARMM22∗ provided the poorest agreement with exper-
imental measurements, whereas ff03w yielded the best agreement. Thus, two independent studies
show CHARMM22∗ is in both agreement and disagreement with experimental data.

At present, owing to the somewhat inconsistent findings reported, there is no definite consen-
sus on the most accurate force field for carrying out IDP simulations. Thus, force field parameters,
including those of water models, need to be further improved. More recently, investigators pro-
posed a new force field, termed ff99IDPs, that specifically targets IDPs. In ff99IDPs, CMAPs
were added to the backbone dihedral-angle potentials of disorder-promoting residues (84). Com-
pared with ff99SB-ILDN, this force field yielded results closer to experimental measurements for
three representative IDP systems (α-synuclein, aspartic proteinase inhibitor IA3, and arginine-rich
HIV-1 Rev) (85). Furthermore, ff99IDPs maintains the secondary structure in ordered protein
regions, indicating the importance of taking into account IDP structures during general-purpose
force field development.

3. THERMODYNAMIC DESCRIPTION OF CONFORMATIONAL
DISORDER

Quantitative measures of conformational disorder are of fundamental importance for elucidating
the thermodynamic driving forces and molecular mechanisms by which IDPs perform their func-
tions. To that end, protein configurational entropy—associated with a protein’s internal degrees
of freedom—is a potentially relevant thermodynamic parameter, and deriving its computation
from atomistic simulations is among the central problems in physical chemistry. Here, we review
recent developments in statistical thermodynamic methods for estimating this important quan-
tity, particularly focusing on methods and their applications that aim to provide thermodynamic
descriptions of conformational order/disorder.

3.1. Protein Configurational Entropy

Computing configurational entropy is key because this factor is central in determining protein sta-
bility. It is also an important constituent of protein–ligand and protein–protein binding affinities.
However, configurational entropy is also the most difficult thermodynamic quantity to estimate.
Therefore, significant effort has been devoted to developing appropriate computational methods
(86–89). The relevance of configurational entropy in computational drug design is also receiving
increased interest (90, 91).

The configurational entropy of a molecule is defined by

Sconfig = −kB

∫
dq p(q) logp(q), 1.

i.e., by the integration of the multidimensional (3N − 6 dimensional when the number of con-
stituent atoms is N ) probability distribution function p(q) over a molecule’s internal degrees of
freedom q. Both Cartesian and bond-angle-torsion (BAT) internal coordinates can be adopted to
represent the configuration vector q. In the latter, the appropriate Jacobian, here omitted, needs to
be included. Because the Jacobian depends only on the bond lengths and angles, which are rather
rigid (92), it can reasonably be neglected in computing unimolecular entropy change. However,
the Jacobian associated with the external coordinates, which leads to external entropy, must be
considered for binding entropy (93, 94). Accurately estimating the full probability distribution
function p(q) from finite samples generated by simulations and performing the high-dimensional
configuration integral over q for complex biomolecules such as proteins are formidable tasks.
Therefore, researchers inevitably introduce certain simplifying approximations.

www.annualreviews.org • Computer Simulations of Intrinsically Disordered Proteins 123

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
7.

68
:1

17
-1

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

So
ok

m
yu

ng
 W

om
en

's
 U

ni
ve

rs
ity

 o
n 

05
/1

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



PC68CH07-Ham ARI 4 April 2017 9:4

Most often, protein configurational entropy is determined using the quasi-harmonic method
that assumes a multivariate Gaussian distribution for the probability distribution function p(q).
This can be done with both Cartesian (27–29) and BAT internal coordinates (25, 26). In this
method, the variance of the 3N − 6 distributions of principal coordinates is computed on the basis
of the mass-weighted covariance matrix of the internal coordinates, which is then used to estimate
configurational entropy.

The quasi-harmonic approach has been widely used because it requires only the covariance
matrix from the simulations as input. This method is also being applied to proteins that include
inherently flexible regions such as calmodulin (95), a calcium-binding messenger protein regulat-
ing diverse target proteins (22). It was shown that the computed configurational entropy changes
that occur upon binding with various target peptides correlate reasonably well with experimental
measurements (22).

3.2. Beyond the Quasi-Harmonic Approximation

A major drawback of the quasi-harmonic method is its lack of accuracy for systems possessing
a multiple-occupied free-energy landscape (96, 97). This severely limits its applicability to pro-
teins because multiple local wells are generally present in the protein free-energy landscape, in
particular to IDPs whose conformational transitions among multiple minima are essential for
their functions. Several theoretical tools (98–112) have been developed to improve the underlying
basic assumptions, i.e., (a) assuming that the probability distributions of coordinates (including
collective coordinates such as principal coordinates) are independent and (b) assuming the Gaus-
sian functional form of the probability distribution along each independent coordinate. In the
following, we survey some of these theoretical developments.

To avoid any assumption about the shape of the probability distribution function p(q), nonpara-
metric methods have been proposed to estimate p(q) from finite samples generated by simulations.
Building histograms in bins of some fixed size along each direction of the configuration vector q is
the most commonly used method (100). However, care must be taken to avoid a possible bin-size
dependence (89). More recently, a nonparametric method was introduced in which the probabil-
ity distribution function p(q) is estimated in terms of the nearest-neighbor distances between the
sample points (101). This approach is a variant of the histogram method, in which a sample-point-
centered histogram is constructed and the bin size is adjusted so the resulting configurational
entropy is unbiased in the asymptotic limit of a large sample size. However, the computational
complexity of this method increases markedly with the dimensionality of the configuration space;
therefore, its applicability is limited to relatively small molecular systems. To overcome this dif-
ficulty, an adaptive kernel density estimation has been developed that extends the applicability of
this method to a configuration space of higher dimensions (103).

Another focus has been to incorporate the correlation effects between the coordinates that the
quasi-harmonic method did not take into account (Figure 1a,b). Mutual information represents
the correlation effects on configurational entropy—termed correlation entropy (113). For exam-
ple, the pairwise mutual information I2(q1, q2) between two coordinates q1 and q2 is defined as
I2(q1, q2) = S1(q1) + S2(q2) − S2(q1, q2) in terms of the marginal entropies S1(q1) and S2(q2) and
the joint entropy S2(q1, q2); I2(q1, q2) is nonnegative and becomes zero only if q1 and q2 are in-
dependent. Higher-order mutual information involving more than two coordinates can also be
introduced (113). To incorporate those correlations systematically, a mutual information expan-
sion (MIE) has been proposed (104, 105). In this expansion, configurational entropy is expressed as
a series of mutual information terms representing successively higher-order correlations among
the conformational coordinates. Although MIE can be formally derived to the full order and
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S(q1) from histogram
Sh(q2) from harmonic approximation
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b Correlation entropy Sconfig = S(q1) + S(q2) – I(q1, q2) incorporates the multiple-minimum nature
and correlation effects not taken into account in quasi-harmonic entropy Sh(q1) + Sh(q2)

c Probability distribution W(f)Dynamics on the landscape f(qt)

Full configurations qt
from simulations W

(f
)

Simulation time t

f(
q t

)

Energetic approach

Sconfig

f
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Figure 1
(a) Minimal model of the free-energy landscape consisting of just two local minima and their projections along coordinates q1 (left
panel ) and q2 (right panel ); red curves denote the harmonic approximation. Marginal entropies S(q1) and S(q2), their harmonic
approximations Sh(q1) and Sh(q2), and mutual information I(q1, q2) can be obtained from these plots. (b) Correlation entropy
incorporates the multiple-minimum nature of this landscape through S(q1) and S(q2) and the correlation effects via I(q1, q2), which are
not taken into account in Sh(q1) + Sh(q2) entropy under the quasi-harmonic approximation. (c) In the energetic approach,
time-dependent full-dimensional configuration vectors (qt) are first taken from simulations. For each configuration, effective energy
f(qt) is computed, from which the distribution function W( f ) is constructed. When W( f ) is well approximated by the Gaussian
distribution (dashed curve), the configurational entropy can be estimated from the width of W( f ).

more accurate entropy estimation is achieved by including increasingly higher-order terms, terms
higher than second order are usually neglected because of their high computational cost. Even the
computation of the pairwise contributions can be challenging for large systems such as proteins.

More efficient computational methods for correlation entropy have therefore been developed,
for example, the maximum information spanning tree (MIST) method (106, 107). MIST is an-
other systematic mutual-information expansion, but unlike MIE (in which all the correlations
between coordinates are incorporated), the expansion in MIST identifies dominant couplings
between coordinates and, thus, considers only a subset of correlations. For this reason, MIST
is computationally more efficient than MIE, which is an important advantage in handling large
systems.

The minimally coupled subspace approach has also been proposed to efficiently incorporate
correlation entropy (103). This method avoids directly applying MIE to large systems. Instead,
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highly coupled degrees of freedom are first clustered into minimally coupled low-dimensional
(∼15) clusters; then, MIE is applied. As a result, this method is applicable to large macromolecules
including proteins.

3.3. Correlation Entropy and Conformational Order/Disorder

Correlation entropy is a crucial quantity for relating configurational entropy to conformational
order/disorder. This is understood, e.g., by considering the change in configurational entropy upon
secondary structure formation from a disordered conformation. Because each secondary structure,
such as an α-helix or β-sheet, can be characterized as a special region in the Ramachandran (φ, ψ)
plot, its formation can be viewed as a restriction imposed between the backbone dihedral angles φ
andψ . Hence, it appears as a negative correlation entropy contribution to configurational entropy.
Thus, correlation entropy serves as an invaluable thermodynamic parameter that quantifies the
conformational characteristics.

Correlation effects on the loss of configurational entropy upon folding originating from back-
bone dihedral angles, side-chain dihedral angles, and couplings between backbone and side-chain
angles have been addressed via molecular dynamics simulations (114). Configurational entropy
and contributions from correlations were computed for native- and denatured-state ensembles of
ubiquitin. Standard molecular dynamics simulations were used to generate the native-state en-
semble. In contrast, restrained simulations were used to yield the denatured-state ensemble so that
the ensemble’s radius of gyration and NMR parameters agree with experimental data. This was
necessary because unrestrained simulations tend to generate excessive collapsed denatured-state
structures, as mentioned in Section 2.2, which is indeed the case for ubiquitin (115). Backbone
entropy largely accounts for the change in configurational entropy upon folding, and α-helix for-
mation provides a more negative contribution to backbone entropy than does β-sheet formation.

The connection between correlation entropy and NMR order parameters characterizing the
site-resolved motional disorder is also of particular interest (116). Indeed, the microscopic origins
of the empirical relationships between configurational entropies and NMR order parameters (21,
22, 117) have been explored via molecular dynamics simulations (118). In this study (118), seven
proteins ranging from quite rigid to internally flexible were investigated. The configurational
entropy of each side-chain methyl group was computed by taking into account the correlated
motions of the side chains. The computed entropy was then compared with the simulated order
parameter of the corresponding methyl side chain. A significant correlation was observed between
these two quantities, and this held even when all the data from different proteins were simulta-
neously considered (118), suggesting a universal relation between site-resolved conformational
dynamics (disorder) and configurational entropy.

3.4. Approaches Based on Nonstructural Variables

Researchers have also developed approaches to determine configurational entropy that focus on
physical quantities other than structural variables such as Cartesian and BAT coordinates. These
methods have conceptual similarity to the quasi-harmonic method because they are based on
Gaussian statistics of the variables of interest, but they effectively take into account nonhar-
monic coordinate distributions. For example, a method has been proposed to estimate configu-
rational entropy from atomic forces computed by molecular dynamics simulations (119). Similar
to the quasi-harmonic method, harmonic approximation is employed in this method, but using
the mass-weighted force covariance matrix. Using forces instead of coordinates is advantageous
because force distributions are highly harmonic (120) and forces capture atomic correlations more
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directly, thereby overcoming the inherent limitation of the quasi-harmonic method. The force-
based method is also more efficient and accurate than the quasi-harmonic method, making it an
attractive method for computing protein configurational entropy.

A new computational approach that focuses on energy has also been developed to determine
configurational entropy (121–123) (Figure 1c). In this approach, configurational entropy is ex-
pressed in terms of the canonical configuration integral Z as

TSconfig = 〈 f 〉 + kBT logZ, Z =
∫

dq e−β f (q), 2.

which follows from Equation 1 by recognizing that ρ(q) = e−β f (q)/Z (121). Here, f = Eu + Gsolv

comprises the solute energy (Eu) and the solvation free energy (Gsolv). The function f, also called the
effective energy, is the genuine identity defining the free-energy landscape (124). The key point
in this approach is to introduce the distribution function W( f ) of the effective energy f (hence,
the energetic approach), with which Equation 2 can be rewritten in a useful form (for a detailed
discussion, see 122, 123). When W( f ) is close to a Gaussian distribution, this approach yields
TSconfig = (β/2) δ f 2 in terms of the variance δ f 2 of the effective energy. W( f ) obeys Gaussian
statics even when the underlying free-energy landscape exhibits multiple minima (97), and this
holds for numerous systems, including IDPs (121–123, 125), because of the central limit theorem.

Based on the energetic approach, a possible connection between the configurational entropies
and residual structures of IDPs has been addressed (125). For this purpose, the wild-type 42-
residue amyloid-β protein and its five familial mutants and two synthetic mutants were studied.
To elucidate a link between the structural features and entropy, the configurational entropies
of these proteins were modeled using the amounts of helical structures, sheet structures, and
salt bridges, which were obtained from respective molecular dynamics simulations. A significant
correlation was observed between computed and modeled configurational entropy, indicating an
intimate link between conformational order/disorder and configurational entropy.

3.5. Conformational Versus Vibrational Entropies

A more ambitious challenge is to separate protein configurational entropy (Sconfig) into conforma-
tional (Sconf) and vibrational (Svib) components, which are respectively associated with the number
of accessible free-energy wells and the average width of the individual wells of the protein free-
energy landscape (126). (Although the terms configurational entropy and conformational entropy
are often used interchangeably in the literature, conformational entropy is considered as a sub-
category of configurational entropy in this review.) This partitioning of configurational entropy
is formally exact because the entropy contributions from the high-free-energy regions that sep-
arate the individual wells can be neglected (127). Such separation enables characterization of the
modulations of the free-energy landscape caused, e.g., by ligand binding and posttranslational
modification in simple terms. It will also be of great practical value in elucidating the molecular
mechanisms that underlie protein activities.

This partitioning scheme also serves as a guide to develop computational methods to determine
configurational entropy. For example, in the mining minima method, low-free-energy conforma-
tions are first identified to incorporate the multiple-minimum nature of the free-energy landscape,
and vibrational properties in individual wells are incorporated via the harmonic approximation
with anharmonic corrections (127, 128). However, enumerating the entire set of minima is not
computationally feasible for complex systems such as proteins, and the applicability of this method
is limited to relatively simple molecular systems.

More recently, investigators proposed a protocol in which the vibrational entropy of a rigid-
rotor harmonic oscillator is combined with direct sampling of dihedral-angle distributions (129).
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In this protocol, the conformational substates are identified by discretizing each of the one-
dimensional dihedral-angle distributions, and the conformational entropy that takes into account
correlation effects is then computed by employing the MIE. The applicability of this combined
protocol to multiple systems has been demonstrated (129, 130).

Researchers have also suggested a method to dissect protein configurational entropy on the
basis of the energetic approach introduced in Section 3.4 (123). In this method, the time variation
of the effective energy f(qt) is first computed according to the protein configurations qt generated
by molecular dynamics simulations. Because f(q) is the defining quantity of the protein free-
energy landscape, f(qt) characterizes the landscape protein dynamics. Slowly varying and quickly
oscillating components were observed from the time-dependent f(qt) curves computed for the
folded and unfolded states of the protein villin headpiece subdomain. This reflects the dynamics
on the rugged free-energy landscape, which consist of rapid vibrations in individual free-energy
wells and slow conformational transitions between them. These two components, of disparate
timescales, can be dissected using the detrending technique known as Hodrick–Prescott filtering
(131); this dissection leads to a natural separation of configurational entropy into conformational
and vibrational terms. In accordance with previous empirical estimations (126), the change in
Sconfig upon folding is dominated by Sconf, even though the magnitude of Svib is significantly larger
in each of the folded and unfolded states. Because of the general applicability of the energetic
approach, it is straightforward to apply this dissection method to IDPs.

Interestingly, the greater relevancy of vibrational entropy (Svib) versus conformational entropy
(Sconf) for the change in configurational entropy has been suggested for events including the asso-
ciation of small molecules (127, 128) and protein–ligand and protein–protein binding (132–134).
In contrast, conformational entropy is considered the dominant term in protein folding. Thus,
if researchers are to elucidate in detail the role of entropy in IDPs, which often exhibit coupled
folding and binding (135), a method that accesses both the conformational and vibrational compo-
nents is indispensible. The computational methods reviewed here will therefore find fascinating
applications in studies of IDPs.

4. CONCLUSIONS

Computer simulations are an invaluable tool for studying a variety of complex biomolecular
systems in atomistic detail. Recent simulations have demonstrated substantial success in obtaining
conformational ensembles of IDPs. However, researchers have also reported several shortcomings
that can be largely attributed to inaccuracies in the currently available biomolecular force fields
and solvent models. This indicates a need to improve force fields further. It also reflects the im-
portance of targeting IDPs and of properly including solvent effects while developing force fields.
An accurate characterization of the conformational ensembles of IDPs is another indispensable
component of their thermodynamic descriptions. Recent statistical thermodynamic methods of
describing configurational entropy take into account the multiple-minimum nature and the corre-
lation effects inherent to the free-energy landscape of IDPs. A combination of these computational
tools will yield new insights into the relationship between the structural disorder and function of
IDPs.
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